Inhaltsverzeichnis

	Vorwort	7
Teil A	Energie	9
	Einstieg	10
1	Worum geht es bei der Energie?	11
1.1	Wozu braucht ein Körper seine Energie?	12
1.2	Welche Grundformen von Energie gibt es?	14
1.3	Woher hat ein Körper seine Energie?	16
2	Wie berechnet man eine Arbeit und eine Leistung?	18
2.1	Wann wird Arbeit verrichtet?	19
2.2	Wie viel Arbeit wird verrichtet?	21
2.3	Wie gross ist die Leistung?	27
3	Wie berechnet man eine Energie?	30
3.1	Wie berechnet man die Energie eines Körpers?	30
3.2	Wie berechnet man die kinetische Energie eines Körpers?	33
3.3	Wie berechnet man die potenzielle Energie eines Körpers?	37
	Exkurs: Der Energiebedarf der Menschheit	41
Teil B	Energieumwandlungen	43
	Einstieg	44
4	Was passiert bei Energieumwandlungen?	45
4.1	Was bedeutet der Begriff Energieumwandlung?	46
4.2	Wo wird potenzielle in kinetische Energie umgewandelt?	47
4.3	Wo wird kinetische in potenzielle Energie umgewandelt?	49
5	Was passiert mit der Energie des Körpers bei Reibung?	52
5.1	Wie berechnet man die Reibungsarbeit?	53
5.2	Was versteht man unter dem Wirkungsgrad?	55
6	Kann man Energie erzeugen oder vernichten?	58
6.1	Wie ändert die Gesamtenergie des Körpers beim freien Fall?	59
6.2	Wie ändert die Gesamtenergie allgemein bei Energieumwandlungen?	60
6.3	Wie wendet man den Energieerhaltungssatz auf abgeschlossene Systeme an?	63
6.4	Wie wendet man den Energieerhaltungssatz auf offene Systeme an?	67
	Exkurs: Entdeckungsgeschichte des Energieerhaltungssatzes	70

Teil C	Impuls	73
	Einstieg	74
7	Der Impulserhaltungssatz	75
7.1	Herleitung des Impulserhaltungssatzes	75
7.2	Anwendungsbeispiele für den Impulssatz	78
8	Stösse	81
8.1	Der zentrale elastische Stoss	81
8.2	Der senkrechte elastische Stoss an der festen Wand	85
8.3	Der zentrale, vollkommen unelastische Stoss	87
Teil D	Begriffe und Modelle der Wärmelehre	91
	Einstieg	92
9	Was sind die wichtigen Grössen der Wärmelehre?	93
9.1	Welche Grössen müssen wir in der Wärmelehre unterscheiden?	94
9.2	Was versteht man unter der Temperatur?	95
9.3	Was versteht man unter der Wärme?	105
9.4	Was versteht man unter der inneren Energie?	107
10	Welches Modell eignet sich zur Beschreibung der Materie?	110
10.1	Wie ist die Materie aufgebaut?	111
10.2	Wie lassen sich die drei Aggregatzustände erklären?	114
11	Was bedeutet die Brown'sche Bewegung?	116
11.1	Was ist die Brown'sche Bewegung?	117
11.2	Was ist die Ursache der Brown'schen Bewegung?	117
11.3	Wie sieht die Bewegung der Atome für die drei Aggregatzustände aus?	121
12	Wie lassen sich Gase beschreiben?	123
12.1	Wie beschreibt man Gase auf mikroskopischer Ebene?	123
12.2	Wie beschreibt man Gase auf makroskopischer Ebene?	128
12.3	Wie passen die mikroskopische und makroskopische Beschreibung zusammen?	132
	Exkurs: Die Geschichte des Wärmestoffs	135
Teil E	Wärmeprozesse	137
	Einstieg	138
13	Wie reagiert Materie auf Wärme?	139
13.1	Wie lautet der Energieerhaltungssatz in der Wärmelehre?	140
13.1	Wie reagiert Materie auf Wärme?	144
13.3	Welche Temperaturänderung bewirkt die Wärme?	146
13.4	Wann bewirkt Wärme eine Aggregatzustandsänderung?	150
13.5	Was passiert mit der Temperatur und dem Aggregatzustand beim Mischen?	152

INHALTSVERZEICHNIS 5

14	Wie wird Wärme transportiert?	156
14.1	Welche Wärmetransport-Mechanismen gibt es?	157
14.2	Wie wird Wärme durch Leitung transportiert?	158
14.3	Wie wird Wärme durch Strömungen transportiert?	161
14.4	Wie wird Wärme durch Strahlung transportiert?	165
15	Was sind technische Anwendungen der Wärmelehre?	169
15.1	Wie kann Wärme in Arbeit umgewandelt werden?	170
15.2	Wie funktionieren Dampfmaschinen und Benzinmotoren?	172
15.3	Wie funktionieren Wärmepumpen?	180
	Exkurs: Die Entwicklung der Dampfmaschine	183
Teil F	Anhang	185
	Zusammenfassung: Energie	186
	Zusammenfassung: Energieumwandlungen	189
	Zusammenfassung: Impuls	191
	Zusammenfassung: Begriffe und Modelle der Wärmelehre	193
	Zusammenfassung: Wärmeprozesse	197
	Formelsammlung	201
	Lösungen zu den Aufgaben	203
	Stichwortverzeichnis	224

INHALTSVERZEICHNIS